3.117 \(\int \frac {1}{\sin ^{-1}(a x)^{7/2}} \, dx\)

Optimal. Leaf size=105 \[ \frac {8 \sqrt {1-a^2 x^2}}{15 a \sqrt {\sin ^{-1}(a x)}}-\frac {2 \sqrt {1-a^2 x^2}}{5 a \sin ^{-1}(a x)^{5/2}}+\frac {8 \sqrt {2 \pi } S\left (\sqrt {\frac {2}{\pi }} \sqrt {\sin ^{-1}(a x)}\right )}{15 a}+\frac {4 x}{15 \sin ^{-1}(a x)^{3/2}} \]

[Out]

4/15*x/arcsin(a*x)^(3/2)+8/15*FresnelS(2^(1/2)/Pi^(1/2)*arcsin(a*x)^(1/2))*2^(1/2)*Pi^(1/2)/a-2/5*(-a^2*x^2+1)
^(1/2)/a/arcsin(a*x)^(5/2)+8/15*(-a^2*x^2+1)^(1/2)/a/arcsin(a*x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 105, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.625, Rules used = {4621, 4719, 4723, 3305, 3351} \[ \frac {8 \sqrt {1-a^2 x^2}}{15 a \sqrt {\sin ^{-1}(a x)}}-\frac {2 \sqrt {1-a^2 x^2}}{5 a \sin ^{-1}(a x)^{5/2}}+\frac {8 \sqrt {2 \pi } S\left (\sqrt {\frac {2}{\pi }} \sqrt {\sin ^{-1}(a x)}\right )}{15 a}+\frac {4 x}{15 \sin ^{-1}(a x)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[ArcSin[a*x]^(-7/2),x]

[Out]

(-2*Sqrt[1 - a^2*x^2])/(5*a*ArcSin[a*x]^(5/2)) + (4*x)/(15*ArcSin[a*x]^(3/2)) + (8*Sqrt[1 - a^2*x^2])/(15*a*Sq
rt[ArcSin[a*x]]) + (8*Sqrt[2*Pi]*FresnelS[Sqrt[2/Pi]*Sqrt[ArcSin[a*x]]])/(15*a)

Rule 3305

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[(f*x^2)/d], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3351

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rule 4621

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^(n + 1))
/(b*c*(n + 1)), x] + Dist[c/(b*(n + 1)), Int[(x*(a + b*ArcSin[c*x])^(n + 1))/Sqrt[1 - c^2*x^2], x], x] /; Free
Q[{a, b, c}, x] && LtQ[n, -1]

Rule 4719

Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[
((f*x)^m*(a + b*ArcSin[c*x])^(n + 1))/(b*c*Sqrt[d]*(n + 1)), x] - Dist[(f*m)/(b*c*Sqrt[d]*(n + 1)), Int[(f*x)^
(m - 1)*(a + b*ArcSin[c*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && LtQ[n,
-1] && GtQ[d, 0]

Rule 4723

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[d^p/c^(
m + 1), Subst[Int[(a + b*x)^n*Sin[x]^m*Cos[x]^(2*p + 1), x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e, n},
x] && EqQ[c^2*d + e, 0] && IntegerQ[2*p] && GtQ[p, -1] && IGtQ[m, 0] && (IntegerQ[p] || GtQ[d, 0])

Rubi steps

\begin {align*} \int \frac {1}{\sin ^{-1}(a x)^{7/2}} \, dx &=-\frac {2 \sqrt {1-a^2 x^2}}{5 a \sin ^{-1}(a x)^{5/2}}-\frac {1}{5} (2 a) \int \frac {x}{\sqrt {1-a^2 x^2} \sin ^{-1}(a x)^{5/2}} \, dx\\ &=-\frac {2 \sqrt {1-a^2 x^2}}{5 a \sin ^{-1}(a x)^{5/2}}+\frac {4 x}{15 \sin ^{-1}(a x)^{3/2}}-\frac {4}{15} \int \frac {1}{\sin ^{-1}(a x)^{3/2}} \, dx\\ &=-\frac {2 \sqrt {1-a^2 x^2}}{5 a \sin ^{-1}(a x)^{5/2}}+\frac {4 x}{15 \sin ^{-1}(a x)^{3/2}}+\frac {8 \sqrt {1-a^2 x^2}}{15 a \sqrt {\sin ^{-1}(a x)}}+\frac {1}{15} (8 a) \int \frac {x}{\sqrt {1-a^2 x^2} \sqrt {\sin ^{-1}(a x)}} \, dx\\ &=-\frac {2 \sqrt {1-a^2 x^2}}{5 a \sin ^{-1}(a x)^{5/2}}+\frac {4 x}{15 \sin ^{-1}(a x)^{3/2}}+\frac {8 \sqrt {1-a^2 x^2}}{15 a \sqrt {\sin ^{-1}(a x)}}+\frac {8 \operatorname {Subst}\left (\int \frac {\sin (x)}{\sqrt {x}} \, dx,x,\sin ^{-1}(a x)\right )}{15 a}\\ &=-\frac {2 \sqrt {1-a^2 x^2}}{5 a \sin ^{-1}(a x)^{5/2}}+\frac {4 x}{15 \sin ^{-1}(a x)^{3/2}}+\frac {8 \sqrt {1-a^2 x^2}}{15 a \sqrt {\sin ^{-1}(a x)}}+\frac {16 \operatorname {Subst}\left (\int \sin \left (x^2\right ) \, dx,x,\sqrt {\sin ^{-1}(a x)}\right )}{15 a}\\ &=-\frac {2 \sqrt {1-a^2 x^2}}{5 a \sin ^{-1}(a x)^{5/2}}+\frac {4 x}{15 \sin ^{-1}(a x)^{3/2}}+\frac {8 \sqrt {1-a^2 x^2}}{15 a \sqrt {\sin ^{-1}(a x)}}+\frac {8 \sqrt {2 \pi } S\left (\sqrt {\frac {2}{\pi }} \sqrt {\sin ^{-1}(a x)}\right )}{15 a}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.24, size = 143, normalized size = 1.36 \[ \frac {2 e^{i \sin ^{-1}(a x)} \left (4 \sin ^{-1}(a x)^2-2 i \sin ^{-1}(a x)-3\right )-8 \sqrt {-i \sin ^{-1}(a x)} \sin ^{-1}(a x)^2 \Gamma \left (\frac {1}{2},-i \sin ^{-1}(a x)\right )+e^{-i \sin ^{-1}(a x)} \left (8 \sin ^{-1}(a x)^2+4 i \sin ^{-1}(a x)+8 e^{i \sin ^{-1}(a x)} \left (i \sin ^{-1}(a x)\right )^{5/2} \Gamma \left (\frac {1}{2},i \sin ^{-1}(a x)\right )-6\right )}{30 a \sin ^{-1}(a x)^{5/2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[ArcSin[a*x]^(-7/2),x]

[Out]

(2*E^(I*ArcSin[a*x])*(-3 - (2*I)*ArcSin[a*x] + 4*ArcSin[a*x]^2) - 8*Sqrt[(-I)*ArcSin[a*x]]*ArcSin[a*x]^2*Gamma
[1/2, (-I)*ArcSin[a*x]] + (-6 + (4*I)*ArcSin[a*x] + 8*ArcSin[a*x]^2 + 8*E^(I*ArcSin[a*x])*(I*ArcSin[a*x])^(5/2
)*Gamma[1/2, I*ArcSin[a*x]])/E^(I*ArcSin[a*x]))/(30*a*ArcSin[a*x]^(5/2))

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/arcsin(a*x)^(7/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\arcsin \left (a x\right )^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/arcsin(a*x)^(7/2),x, algorithm="giac")

[Out]

integrate(arcsin(a*x)^(-7/2), x)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 110, normalized size = 1.05 \[ \frac {\sqrt {2}\, \left (8 \arcsin \left (a x \right )^{3} \pi \,\mathrm {S}\left (\frac {\sqrt {2}\, \sqrt {\arcsin \left (a x \right )}}{\sqrt {\pi }}\right )+4 \arcsin \left (a x \right )^{\frac {5}{2}} \sqrt {2}\, \sqrt {\pi }\, \sqrt {-a^{2} x^{2}+1}+2 \arcsin \left (a x \right )^{\frac {3}{2}} \sqrt {2}\, \sqrt {\pi }\, x a -3 \sqrt {2}\, \sqrt {\arcsin \left (a x \right )}\, \sqrt {\pi }\, \sqrt {-a^{2} x^{2}+1}\right )}{15 a \sqrt {\pi }\, \arcsin \left (a x \right )^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/arcsin(a*x)^(7/2),x)

[Out]

1/15/a*2^(1/2)/Pi^(1/2)/arcsin(a*x)^3*(8*arcsin(a*x)^3*Pi*FresnelS(2^(1/2)/Pi^(1/2)*arcsin(a*x)^(1/2))+4*arcsi
n(a*x)^(5/2)*2^(1/2)*Pi^(1/2)*(-a^2*x^2+1)^(1/2)+2*arcsin(a*x)^(3/2)*2^(1/2)*Pi^(1/2)*x*a-3*2^(1/2)*arcsin(a*x
)^(1/2)*Pi^(1/2)*(-a^2*x^2+1)^(1/2))

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: RuntimeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/arcsin(a*x)^(7/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: Error executing code in Maxima: expt: undefined: 0 to a negative e
xponent.

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{{\mathrm {asin}\left (a\,x\right )}^{7/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/asin(a*x)^(7/2),x)

[Out]

int(1/asin(a*x)^(7/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\operatorname {asin}^{\frac {7}{2}}{\left (a x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/asin(a*x)**(7/2),x)

[Out]

Integral(asin(a*x)**(-7/2), x)

________________________________________________________________________________________